

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)

College with Potential for Excellence by UGC

DST-FIST Supported & STAR College Scheme by DBT

Faculty of Science

Bachelor of Science (B.Sc.)

SUBJECT: MATHEMATICS

B.Sc. II Semester Paper- Major/ Minor

Calculus and Differential Equations

Course Outcomes

CO.No.	Course Outcomes	Cognitive Level
CO1	Sketch curves in a plane using its mathematical in the different coordinate system of reference.	U, E
CO2	Using the derivatives in Optimization Social sciences, Physics and Life sciences etc.	Ap
CO3	Formulate the Differential equations for various Mathematical models.	Е
CO4	Using techniques to solve and analyze various Mathematical models.	Ap

Credit and Marking Scheme

		Marks	Total Marks	
	Credits	Internal	External	
Theory	6	40	60	100
Total	6	100		

Evaluation Scheme

	Marks		
	Internal	External	
Theory	3 Internal Exams of 20 Marks (During the Semester) (Best 2 will be taken)	1 External Exams (At the End of Semester)	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Content of the Course Theory

No. of Lectures (in hours per week):6Hrs. per week

Unit	Maximum Marks: 60		
I	1.1 Historical Background :	No. of Lecture	
	1.1.1. Development of I-diana	21	
	Ancient and Farly Classical P. indian Mathematics:	244	
	Ancient and Early Classical Period (till 500 CE) 1.1.2. A brief biography of Di	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
600	of the biography of Bhaskaracharus (with		
	special reference to Lilavati and Madhava) 1.2 Successive differentiation		
	1.2.1 Leibnitz theorem		
	Zeroniz dicoreni		
	3 Series expansions		
The state of	1.2.3 Taylor's series expansions 1.3 Partial Differentiation		
	1.3.1 Partial derivative of higher order		
	1.3.2 Euler's theorem on homogone of	100000000000000000000000000000000000000	
	1.3.2 Euler's theorem on homogeneous functions 1.4 Asymptotes		
	. 1.4.1 Asymptotes of algebraic curves		
	1.4.2 Conditions for existence of Asymptotes	1-24-25-1987	
	1.4.3 Parallel Asymptotes	33 1 1 2 3 3 3	
	1.4.4 Asymptotes of polar curves		
I 2	.1 Curvature		
	2.1.1 Formula of radius of Curvature		
461	2.1.2 Curvature at origin		
	2.1.3 Centre of Curvature		
2.	2 Integration of transcendental functions		
	3Introduction to Double and Triple Integral	ere.	
	4Reduction formulae	284	
3.1	Concavity and Convexity		
3.1	.1 Concavity and convexity of curves		
3.1		24	
3.1			
3.1.			
3.2	Tracing of curves		
3.2	1 Curves represented by Cartesian Equation		
3.2.	11 0 1 0 1		

John .

M. D. M. Malues

Purto Sas

NY

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

	3.3 Quadrature	
	3.3.1 For Cartesian coordinates	
	3.3.2 For Polar coordinates	
	3.4 Rectification	
	3.4.1 For Cartesian coordinates	
IV	3.4.2 For Polar coordinates	-
14	4.1 Linear differential equations	284
	4.1.1 Linear equations	
	4.1.2 Equations reducible to the linear form	
1837	4.1.3 Change of variables	
	4.2 Exact differential equations	
1991	4.3 first order and higher degree equations	
35.11	4.3.1 Equation solvable for x, y and p	
	4.3.2 Equations homogeneous in x and y	
	4.3.3 Clairaut's equation	
149	4.3.4 Singular solutions	
	4.3.5 geometrical meaning of a differential equation	
1000	4.4 Orthogonal trajectories	
V	5.1 Linear differential equation with constant coefficients	24
	5.2 Homogeneous linear ordinary differential equations	-1
	5.3 Linear differential equations of second order	
	5.4 Transformation of equations by changing the dependent	
	variable/ independent variable	
	5.5 Method of variation of parameters.	

References

Text Books:

- 1. Gorakh Prasad- Differential Calculus, Pothishala Private Ltd., Allahabad.
- 2. Gorakh Prasad- Integral Calculus, Pothishala Pvt. Ltd. Allahabad.
- M. D. Raisinghanianar: Ordinary and Partial Differential equations. S. Chand & Co Ltd.2017
- Gerard G. Emch.R. Sridharan M.D. Srinivas: Contributions to the History of Indian Mathematics, Hindustan Book Agency Vol. 3,2005
- 5. मध्यप्रदेश हिंदी ग्रंथ अकादमी की पुस्तके।

Reference Books:

1. N.Piskunov - Differential and Integral Calculus, CBS Publishers, 1996.

2. G.F. Simmons- Differential Equation, Tata McGraw Hill, 1972.

Jolans.

James 29/2/20

l' Sain

NY

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

- E.A.Codington- An Introduction to ordinary differential Equation, Prentice Hall of India, 1961.
- D.A.Murray- Introductory Course in Differential Equations, Orient Longman(India) 1967.
- H.T.H. Piaggio- Elementary Treatise on Differential Equations and their Application, C.B.S. Publisher & Distributors, Delhi, 1985
- Bibhutibhusan Datta and Avadhesh Narayan Singh: History of Hindu Mathematics, Asia Publishing House 1962

Composition of Maries 2017/20

Jalan

Pareli

Spain

1